
S. g~AVNI~AR 383 

gether  into one infinite layer  through the oxygen 
a toms paral lel  to (100). In  addition, each oxygen a tom 
belongs to one Hgi octahedron, and each chlorine 
a tom to two such octahedra.  I t  follows tha t  the struc- 
ture is bui l t  up of a l ternat ing layers of Hg ++ cations 
and  polymeric  (OHgCI)- anions. These layers can be 
best realized from the project ion on (010) plane in 
(Fig. 6). The Hgu  te t rahedron is far more distorted 
t h a n  the Hg~ octahedron, as m a y  be seen from Table 3. 
This distort ion is par t ly  caused by the polarization 
act ion of the mercuric ion (Hgn) and par t ly  by  the 
packing conditions dictated by the largest C1 ions. 
The 0 - 0  approaches in the same te t rahedron are 
4.14, 3 .90 and 2.48 /~. The last  value belongs to the 
common edge of two l inked te t rahedra ,  since each 
te t rahedron  shares one of its 0 - 0  edges with its 
neighbour.  Tha t  is the shortest  distance between the 
non-bonded atoms. 
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The Probabi l i ty  Dis tr ibut ion  of Intensi t ies .  VI. The  Influence of Intensi ty  
Errors  on the Stat is t ica l  Tes t s  
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The statistical tests, three for centrosymmetry and one for planes of symmetry,  have been examined 
to determine quanti tat ively their sensitivity to errors in the original intensity data. The errors 
considered are (i) random errors proportional to I, (ii) errors systematic in I of the form Io -= 
k2Y(1--exp ( - - I /kX)) ,  (iii) errors systematic in sin 0, and (iv) errors associated with the non- 
observance of very weak reflexions. Errors (i) and (ii) of ordinary magnitude produce no confusion. 
Errors (iii) can affect the tests only through errors in the determination of (I> as a function of sin ~ 0, 
and to these the tests are rather sensitive. Errors (iv) can also have marked effects, for which, 
however, allowances can be made. The tests are unequally affected by a given amount of error, 
but the results derived here permit the estimation in a given problem of likely outer limits for the 
result of each test. Results lying outside this limit may be regarded as significantly different and 
indicative of some structural peculiarity. 

1. In troduc t ion  

1.1. Several authors have reported successful decisions 
for or against  cen t rosymmet ry  using the  s tat is t ical  
tests  discussed in the  preceding papers of this  series, 
bu t  results are sometimes obtained which do not  agree 
well with the criteria which characterize the two ideal 

* Now at the National Research Council, Ottawa, Canada. 

in tens i ty  distr ibutions,  the  centric and the acentric. 
The discrepancies m a y  be a t t r ibu ted  to: 

(i) some violat ion of the assumptions under ly ing  
the der ivat ion of the ideal  dis t r ibut ion functions, e.g. 
too few atoms (for allowances see Wilson (1951), 
H a u p t m a n  & Kar le  (1953) and  Karle  & H a u p t m a n  
(1953)), lack of general i ty  in their  positions, pseudo- 
s y m m e t r y  (for a possible example  see Bragg, Howells 
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& Perutz (1952)), additional non-crystallographic sym- 
metry (considered by Lipson & Woolfson (1952) and 
discussed in more detail by Rogers & Wilson (1953)), 
or a few dominant atoms (examples of which were 
discussed by Howells, Phillips & Rogers (1950)); 

(ii) a total number of independent intensities too 
small to make the statistical treatment valid; 

(iii) an erroneous evaluation of <I> as a function of 
sin 9 0 ; or 

(iv) errors in the observed intensity data. 

The results obtained by these tests have always 
hitherto been interpreted on the assumption that  the 
effects of the usual errors are small, but this assump- 
tion, which was given only a preliminary discussion 
by Howells et al. (1950), demands the closer study and 
proper justification that  are supplied here. This is all 
the more necessary in view of recent attempts to 
correlate the statistical anomalies with structural 
peculiarities. A statistical result given by one of these 
tests can only be regarded as significantly different 
from the ideal figure if the discrepancy exceeds the 
maximum attributable to errors, and the estimation 
of this has necessitated a quantitative study. 

Similar remarks apply to the average-multiple test 
discussed by Rogers (1950), and a study of the sen- 
sitivity to errors of this test has also been included in 
this paper. 

1-2. The experimental estimation of intensities, 
whether by photography or counting techniques, is 
always accompanied by some measure of both random 
and systematic errors, and it will be convenient in 
what follows to treat them separately. The effects of 
random errors are discussed in § 2. The discussion of 
systematic errors is split into three parts: § 3 deals 
with errors systematic in I only, § 4 with errors 
systematic in sin 0 only, and § 5 with the errors due 
to unobserved reflex]ons, an error which is both 
systematic in I and a function of sin 0. The treatment 
of § 4 applies, therefore, equally to those of the 
experimental errors that  are systematic in sin 0 (in- 
eluded in (iv) above) and those introduced in the 
course of the statistical work by the use of wrong 
values of <I>, as in (iii) above. Errors that  vary 
erratically throughout reciprocal space can be re- 
garded as random. Absorption in an irregular crystal 
provides an example; on averaging the intensities over 
annuli or shells in reciprocal space, ~he equivalent of 
random errors will occur in each shell, though the 
change from shell to shell will be an error systematic 
in sin 0 (§ 4-1 below). 

1.3. The treatment of the effects produced by these 
different kinds of error is facilitated by the introduc- 
tion of the quantities 

gn = <I~>/<In>, (1) 

where I is the true value of the intensity of a reflex]on, 

Io is its observed value and n has the values ½, 1 or 2. 
We shall assume throughout this paper that  I con- 
forms to one or other of the ideal distributions. For 
these <I~  has the values in Table 1. 

Table 1 
<i~> <i> (i~> 

A c e n t r i e  (yt~/4)½ Z 2 ~  ~z 
Centric (22:/g) ½ 27 3Z 2 

By analogy with our definition of z we may write 

Zo = I o / ( I o ) ,  (2) 
so that  

Io Io z  
zo - g l < i )  - i g  1 • (3) 

There will not normally, therefore, be any simple 
relation between Po(z) ,  No(z) ,  the observed values,* 
and P(z), N(z), details of which were published earlier 
for the ideal distributions. 

The value obtained for the test ratio when based on 
observed intensities is 

~o = <I~>9/<Io>, (4) 

which may be written as 

q° (g~)~ (5) 
gl 

Similarly, the observed value of the specific variance t 
is 

<~> 1,  (6) '-'o <L>~ 

whence, 
v o+ 1 g~ 
v + l  - g ~ "  (7) 

2. R a n d o m  e r ro r s  

2.1. The .random errors in visual estimation of the 
intensities are substantially larger than those in 
counting techniques, and it is not often that  the pre- 
cision of visual estimation will justify allowances for 
hydrogen atoms and the anisotropy of the thermal 
motion of individual atoms. Such a degree of refine- 
ment, however, is justifiable with intensity data ob- 
tained from counting techniques. At least a half of the 

fez 
* We defmo iv(~) ~ _~o P¢~)~ so that the corresponding 

~ J V  

quantity I z° o .P(zo)dzo could equally well be written as /V(zo). 
We write it as No(z) as there are occasions later in the paper 
when it is desirable to treat .N(z), .No(z ) as distinct functions 
of a common variable. 

t The specific variance quoted throughout this and earlier 
papers is the variance of the intensities. It should be distin- 
guished from the specific variance of the F's, which is related 
to the test ratio thus: 

vF = Q-l_ 1. 
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residue of 4.6% found by Cochran (1951) for the 
reliability index of the [010] zone of adenine hydro- 
chloride seems to be due to the random errors of ob- 
servation (see Cochran, 1950). For  the best visual 
estimates ul t imate values of the reliability index range 
from 10 to 15%. 

The exact way in which the error is related to the 
intensity is a mat ter  of some doubt. I t  is fairly certain 
tha t  the middle range of intensities, derived from 
estimates made on every film in multiple-film tech- 
niques, would be least subject to error, and tha t  both 
the weak and the strong intensities, which can only be 
measured on a limited number of films, would be less 
accurate. 

Booth (1947), in the course of an investigation of the 
effects produced by the errors of intensity estimation 
on the atomic coordinates derived from Fourier maps, 
examined two independent sets of observed intensities 
for dibenzyl (Robertson, 1935; Jeffrey, 1947) and con- 
cluded tha t  the errors in IFI could be taken as random 
and independent of the observed magnitude. He sug- 
gested tha t  errors in IF[ proportional to IF[ (i.e. errors 
in I proportional to I) might be more acceptable, and 
such a distribution was first studied by Booth & 
Bri t ten (1948). Phillips (1951) analysed the results for 
the two estimations on dibenzyl and also two of his 
own separate estimations of the intensities of the re- 
flexions in the [010] zone of ephedrine hydrochloride. 
He found in both cases a relation of the form 

((AI)2)½ oc I t  (8) 

with some evidence for a smaller exponent in the 
middle of the intensity range. The work was carried 
out on the intensities after allowing for the Lorentz 
and polarization factors, but  it would be preferable 
to have used the intensities as measured on the films. 
I t  seems reasonable, then, to suppose tha t  the errors 
in the observed intensities, due to the random errors 
of estimation, are, very roughly, proportional to the 
measured intensities and this was adopted as a 
mathematical ly  convenient basis for the present study. 

2"2. We shall assume, therefore, the relationship* 

Io = I ( I + A ) ,  (9) 

in which A is normally distributed, with ( A ) =  0, 
(A 2) = (12, ( A d ) =  3oa, etc. From this we deduce, 
since there is no correlation between I and A, 

gl = 1,  (10a) 

g½ = ( ( I+A)~> ,  (lOb) 

* This implies a finite probability of finding negative values 
of Io although they are physically impossible. If, as in the 
experimental work of § 2-3, such values are reckoned zero a 
slight distortion is introduced into the distribution of errors. 
The results obtained in this section do not allow for this 
distortion but the error it introduces is quite negligible for 

<1  

g2 = l+a2" (10c) 
Hence, 

Vo = v + ( l + v ) a  2, (11) 
and 

eo/e = ((1 +A).~) 2. (12a) 

This last equation can be expressed as the asymptotic  
series 

{ o.2 15a4 315a. }2 
~o/~O = 1 2a 2~ 210 . . .  , (12b) 

which is suitable for numerical computation only 
when (1 is small (~< 0.5), and may  then be writ ten as 

~o/~ = 1-(12/4. (12c) 

The evaluation of Po(z) and .No(z ) also is not  straight- 
forward. For  example, we may write the combined 
probabili ty of finding an observed intensity Io, the 
result of all possible transitions A from all values of I ,  
a s  

P(I°)dI°  = l P ( I ) P ( A ) d A d I  . (13) 

These may  be re-expressed in terms of Io, I or Io, A, 
but  the integrals so obtained have not been evaluated 
in any convenient form. To overcome the difficulties 
in both this and the ratio test  we have adopted an 
experimental approach to this problem which is dis- 
cussed in the next  paragraph. 

2-3. A n  experimental investigation. 
2.3.1. The introduction of random errors increases 

the dispersion of the intensities. The seriousness of 
this effect was investigated by introducing graded 
random errors into two sets of intensity data, one for 
each type of distribution, which otherwise appear to 
conform to the ideal distributions. They were: 

(1) Centric distribution. Reflexions in the [010] zone 
of 1 : 2 : 3 : 4 tetraphenylcyclobutane,  space group P21/a 
(Dunitz, 1949). 

(2) Acentric distribution. General reflexions from 
nitronium perchlorate (Truter, 1950). The space group 
of this substance was found in an earlier statistical 
investigation to be Cc. 

Each intensity, I ,  observed by these workers was 
replaced by Io, where 

I o - - / ( l l n d ) .  (14) 

The sign and the magnitude of the error, d, for each 
reflexion were decided using the tables of random 
numbers given by Fisher & Yates (1948), the actual 
value of d being determined from tables of the normal 
error function. 

The adjustable factor, n, was introduced to control 
the severity of the errors introduced; the three values 
used gave r.m.s, errors, a, of 0-15, 0.36 and 0.70.* 

* F o r  s e v e r e  e r r o r s  Io (in e q u a t i o n  (14))  b e c a m e  n e g a t i v e ,  
b u t  i n  s u c h  c a s e s  t h e  i n t e n s i t i e s  w e r e  r e c k o n e d  a s  z e r o ,  s o  

27* 
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2"3"2. The N(z) tes t . - -The hro(Z) dis t r ibut ion curves 
are shown in Fig. l (a)  and  (b). I t  can be seen t h a t  

I 0,70 I o o oO 

F o Jo.o-o-°- o.0.  
I /o9 .  °'- 1 o 2 " /  

..Jo.o-O-- .--o.. 
/ 1.2.o'> --- 

z z 
(a) (b) 

Fig.  1. The  mod i f i ca t ion  of the  c um ula t i ve  d i s t r ibu t ion ,  N(z),  
resul t ing  f r o m  the  i n t roduc t i on  of r a n d o m  errors ,  a is t he  
R.M.S.  f rac t iona l  er ror ,  a n d  is def ined  in § 2-2. 

(a) N(z) for  an  acent r ie  d i s t r ibu t ion  of intensi t ies .  
(b) 2V(z) for  a eent r ic  d i s t r ibu t ion  of intensi t ies .  

even fo r ' qu i t e  large errors (o" ~ 0.4) the  distr ibutions 
are only slightly distorted,  and  it  is no t  unti l  ve ry  
large values of a (---0-7) are in t roduced t h a t  there is 
sufficient distort ion to lead to a false in terpre ta t ion.  
Such large errors cause an acentric dis t r ibut ion to be 
dis torted to such an ex ten t  t h a t  it  would be t te r  fit, 
and  thus  be mis taken  for, the  centric dis t r ibut ion;  
no such confusion would arise in the  present  investiga- 
t ion unti l  a has values approaching 0.7. Similarly, the  
distort ion of the  centric curve is not  l ikely to lead to 
confusion with the  hypercentr ic  (Lipson & Woolfson, 
1952; Rogers & Wilson, 1953) so long as r andom 
errors are the  sole cause of the  distortion. 

2.3.3. The variance and ratio tests . --The values ob- 
ta ined exper imental ly  for ~o and  Vo are set out  in 
Tables 2 and  3. F rom them and  from equations (11) 
and (12) we can d raw the following conclusions, 
bearing in mind, however,  t h a t  these equat ions pre- 
suppose an undis tor ted  normal  dis t r ibut ion of errors:  

(1) An  acentric set of intensities will not  be mis taken  
for centrie by  either test  unless r andom errors occur 
for which ~ lies between 0,36 and 0,70 and rather nearer 
the  lat ter .  

(2) I t  is a curious fact ,  verifiable by  reference to 

that some departure from a strictly Gaussian distribution of 
errors then occurs, and the relation a ---- (g/2)½ (IA[) will not 
apply for the larger values of a (~  ½) treated here. The values 
of a quoted here are for the errors actually introduced, i.e. 

and  i t  is on ly  for  the  lower va lues  of n t h a t  one can  use the  
a p p r o x i m a t i o n  

Table 2 

(r of r a n d o m  Acent r ic  C~ntric 
er rors  ~ ~ 

i n t r o d u c e d  v c  v 1 v 2 v c  v 1 

0.00 1-000 1.04 1.04 2.000 2.07 
0 . I5  1.045 1.08 1.08 2-068 2-02 
0.36 1.259 1.25 1-24 2.388 2-38 
0.70 1-980 1.98 1.74 3.471 3.51 

v2 
2-07 
2-02 
2-38 
2-68 

v z ---- (z ' 2 ) -  1 where  z"  - ~  I o / ( I ) ,  and  vz = (zo 2 ) -  1, where  
• o = S o / ( S o ) .  

The  dif ference be t ween  ( I )  and  ( Io )  is a consequence  of 
the  a s y m m e t r y  re fe r red  to  in  t he  foo tno te ,  p .  385 ( second  
column) .  I t  is n o t e w o r t h y  t h a t  v~, which  would  usua l ly  be 
eva lua t ed ,  is less a f fec ted  b y  r a n d o m  errors  t h a n  v 1. 

Table 3 

a of r a n d o m  Acent r ie  Centr ic  
er rors  ~ ^ r ^ 

i n t r o d u c e d  ~l q~ ~l Q2 

0.00 0.774 0-774 0-656 0-656 
0.15 0.768 0.768 0.639 0.639 
0.36 0.754 0.743 0-626 0-613 
0-70 0-684 0"674 0-569 0"562 

Q1 and  ~2 cor respond  to  v 1 and  v 2 of Tab le  2. 

equat ions (34) and  (35) of Rogers & Wilson (1953), 
t h a t  each of the  distr ibutions in the  sequences, 
acentric,  centric, bicentric . . .  or acentric (=  aparal-  
lel), parallel, biparallel  . . .  has a specific variance,  
v,, which would be increased by  r andom errors to 
t h a t  of the  next  higher member ,  v,+l, for a 2 =  0.5 
or a = 0.707. The rat io  ~,/~,+1 is likewise a constant ,  
viz. g9/8, bu t  it  is not  possible to es t imate  the  corre- 
sponding value of a as the  series (12b) is divergent .  

(3) Similarly, the  value ½(vn+v,+l) always corre- 
sponds to a = 0.50. This is roughly,  therefore," the  
upper  limit of a for which correct in terpre ta t ions  can 
be made.  

(4) The values of v and Q prior to our in t roduct ion 
of r andom errors contain both  the  effects of the  ex- 
per imenta l  errors of observat ion by  the  original in- 
vest igators  and  the  errors involved in the  s tat is t ical  
manipulat ion.  For  the  variances their  combined effects 
can be in terpre ted  as a = 0.14 (acentric) and  0-15 
(centric), but  it  seems unwise to place much  reliance 
on a value of a deduced in this way.  

2.4. The average-intensity multiple 
I t  is evident  t h a t  if the  errors are symmetr ica l ly  

dis t r ibuted (<A~ = 0) the  mean  value of I is unchanged,  
and this will be t rue  of both the  enhanced row or zone 
and the  others used for comparison. The mult iple  
found is, therefore,  free f rom sys temat ic  error so long 
as symmetr ica l ly  dis t r ibuted r andom errors only occur. 

2.5. According to Rober tson & Whi te  (1947), the  
mean  r andom error to be expected in photographic  
work is not  likely to exceed 20% in 1, i.e. <IA]) = 0-2, 
or, assuming the  errors to be normal ly  dis tr ibuted,  
a = 0.25, a z = 0-06. 
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Random errors of this magnitude are not able, 
therefore, to lead to misinterpretation of the results 
given by any of the statistical tests. 

3. E r r o r s  s y s t e m a t i c  as  a funct ion of I o n l y  

3.1. Systematic errors which are a function of the 
intensity only may  arise from the methods of recording 
and estimating the intensities (for further details see 
Kaan  & Cole (1949) and Wallwork & Standley (1954)), 
from inadequate allowance for lost counts with Geiger- 
counter equipment, and from extinction. We shall 
defer consideration of the unobserved reflexions to 
§ 5; for the rest the most probable distortion of the 
intensities would seem to be underestimation of the 
strong intensities and overestimation of the weaker. 
Errors which compress the range of intensities in this 
way will reduc~ the dispersion. Conversely, errors 
which expand the intensity range increase the dis- 
persion. This is in contrast to the effects produced by 
random errors, which can only increase the dispersion. 

A simple type of compressive distortion, which is 
mathematical ly convenient for estimating the mag- 
nitude of the effects on the statistical results, and is 
also a satisfactory first-order approximation to the 
distortions just  described, is obtained by supposing 
a relation* 

-To = kX{1-exp  ( - I / k Z , ) } ,  (15) 

where X = <I>. If we assume tha t  10% underestima- 
tion for I = 3(1> is reasonably severe we find tha t  
k - 15, and will normally exceed this. 

In addition to z and zo, whose averages are unity,  
we shall need to use 

z' = Io1(I> = glZo, (16) 

whose average is gl. Rewriting equation (15) gives 

z' = k { 1 - e x p  ( - z / k ) } ,  (17) 
so tha t  

0 ~<z' < k  
and 

z = - k  In (1-z" /k) .  (18) 

We shall determine first <z'> = g~ and then No(z) in 
each case. 

* Another  distortion of the form 

Io = k X  t anh  ( l i k e , )  

has also been considered because of its close connection with 
Darwin's  (1922) result for pr imary  extinction. (This result, 
however,  applies only to large crystal slabs with the reflecting 
planes parallel to the external  face; see also Weiss, 1952.) 
This function was used to obtain analytic results for the 
acentric case which were of much the same order of magni tude 
as those quoted here for the exponential  function. The centric 
case led, however, to a very  slowly converging series quite 
unsui ted to numerical  computation.  

3.2. The N(z) test 
3.2.1. Acentric case.--:'The ideal acentric distribution 

is 
(1)P(z)dz = exp ( - z ) d z .  (19) 

Hence, 
(1)P(z')dz' = (1-z ' / k )k - ldz  ' 

and 
(1)gl = <z'> 

- I k (1 --z'/k)k-lz ' dz' (20) 
iw 0 

= k/(k + 1) (21) 

= 1 - k - l + k - 2 - . . . .  (21a) 
Thus 

zo = z ' ( k+l ) / k  = (k+ l )  { 1 - e x p  ( - z / k ) } .  (22) 

For low values of z/k the change to Zo is due entirely 
to the reduced average and is equivalent to a linear 
expansion of the scale of abscissae in the (1)P(z) and 
(1)N(z) graphs. More generally, the whole (1)No(z) 
curve can be obtained by plotting the usual ordinates 
of the acentrie N(z) graph against the transformed 
abscissae Zo. Alternatively, from the definition 

we get 

whereas 

(1)No(z) = f:°P(zo)dzo , 

(1)No(z) = {1--[1--Zo/(l+k)]k}, (23) 

(1)N(z) = { 1 - e x p  ( - z ) } .  (24) 

Equat ion (23) is, however, less convenient for plotting 
the (1)No(z) graph. Fig. 2(a) shows tha t  the departure 
is slight for k > 10 and tends away from the centrie 
c u r v e .  

To estimate k, it is convenient to plot (1)No(z)/(1)N(z) 
against z. The result (in the range 0 < z < 1) is very 
nearly a straight line with an intercept (1)g 1 = 
k/(k + 1) and a slight positive slope. If the experimental 
values of (1)No(z) are sufficiently consistent it may  
be possible to estimate k from this intercept. 

3.2.2. Centric case.--Starting from the centric distri- 
bution 

(i)P(z)dz = (2~tz)-~ exp ( - z / 2 ) d z ,  (25) 

and following a similar procedure gives 

fk (l_z,/k)~k-az, dz, 
(1)gl = o {2~tk ha (1-z ' /k)-~} ½ ' (26) 

which is conveniently integrated by substituting 

(1-z ' /k)  = exp (_p2) .  
As a result 

(i)g~ = k{1-[k/(k+2)]½} (27) 

= 1 - ( 3 / 2 k ) + ( 5 / 2 k ~ ) - . . . .  (27a) 
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1.0--~ 

N(z) 

0-5 

0 
0 

I I I 

1 z 2 3 (o) 

14) 

N(z 

I ~...-.. . ~  

k=oo 

0 I I V 

0 1 z 2 3 (b) 
Fig. 2. The modification of the cumulative distribution, N(z), resulting from the introduction of a systematic 'exponential' 

error as defined in § 3-1. (a) N(z) for a set of aeentrie intensities. (b) N(z) for a set of eentrie intensities. 

(This is a 50% larger change than  for (1)g 1 at  the usual 
large values of k.) Hence, 

1 -  exp ( - z / k )  
z° = 1 - [ k ] ( k  + 2)]t (28) 

and 

(1)No(Z) = err [ -½k  In {1-Zo(1-[k/ (k+2)] t )}]  ½, (29) 

which, for small values of z/k, reduces to 

err [½glZo] ½, (29a) 
whereas 

(i)N(z) = err [½~]~. (30) 

Here, too, it  is much easier to plot (1)No(z) by trans- 
forming the abscissae only, a transformation which is 
again linear for low values of z/k. Fig. 2(b) indicates 
the t rend of (i)No(z), and it is evident tha t  for k > 5 
there will be no confusion with the acentric distribu- 
tion. The magnitude of k can be estimated by plotting 
either 

(a) (1)No(z)/(i)N(z) against z, or 
(b ) zo/z against z for (i)N(Zo) = (1)N(z) (see footnote*, 

p. 384). 

These a r e  both nearly linear ir~ the range 0 < z < 1. 
The first has an intercept [(1)gl] t, the second an 
intercept (1)gl- 

3.3. The variance test 
3-3.1. Acentric case . - -By analogy with equation (20) 

we have 
I .  

= 2k~/(k+ 1) (k+2) ,  (32) 
so tha t  

(1)Vo = k/(k + 2) .  (33) 

For k -+ oo this becomes unity, as found by Wilson, 

and it  is evident tha t  it  will not  be seriously affected 
even by  values of k as low as 10. 

3-3-2. Gentr/c case.--Analogy with equation (26) and 
procedure as in § 3.3.1 gives 

k ½ k ½ 

so tha t  

(i) o (__k l,l, (35) 
\2+2]  j 

On expansion this gives 

[ 3 4 7 5 8 7  ] 
( 1 ) v o = 2  1 - ~ + 4 k  ~ 4 ~ + " "  ' (35a) 

which again agrees with Wilson's result as k ~ oo. 
Equat ion (35) gives 

(1)vo= 1-661 for k =  15 
and 

(1)Vo= 1.295 for k = 5 ,  

so tha t  there is little likelihood of confusion occurring 
in practice. 

3.4. The test ratio 

3.4.1. Acentric case.--I t  is easily shown tha t  

(1)hi = k~ I ' (k)F(~) (36) /'(k+~) ' 
whence 

= ~r (k+  1)P(k+ 2)[ 
(1)co = ~ / ~ ( k - ~  ! .  (37) 

This may  be reduced by use of Stirling's formula and 
represented to a very close approximation (for k ~> 5) 
by 
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exp . (38) 

As k -+ ~ the quantity in the braces of equation (37) 
tends to unity so that  (1)0 o -> zr/4 = 0.785, as found 
by Wilson. At k = 15, (1)Qo = 0.798; and at k = 5, 
(1)e o =0.819. 

3-4-2. Centric case.--Following the pattern of equa- 
tions (26) and (34) we obtain 

(i)g½ -- k exp ( -½kp") [1-exp  (-p~)]½dp, (39) 
0 

which is most conveniently evaluated by expanding 
the surd as a polynomial in p. This gives 

whence 

(i)g½ = 1 - ~ + 1 ~ + . . .  , (40) 

2 1 -  + 12k---- ~ . . .  
(i)eo=-~ k[r l -(~-~)]k ~ " (41) 

For k = 15 this gives (2/~)× 1.029 = 0.655 and for 
k --> c¢, (i)Qo -+ 2/:t = 0.637, the figure given by Wil- 
son. 

The increment here is quite insignificant compared 
with the interval between 2/:t (centric) = 0.637 and 
g[4 (acentric) = 0.785 and there can be no possibility 
of confusion arising from this type of error when the 
ratio test is used to distinguish between the distribu- 
tions. 

3-5. The average-intensity multiples 
For a set of reflexions with enhanced <I> the 

probabilities of equations (19) and (25) are replaced by 

(1)P(I)dI = (nZ) -x exp ( - I / n Z ) d I  (42) 
and 

(1)P(I)dI = (2:tnZI) -½ exp ( - I / 2nZ , )d I ,  (43) 

where n is the multiple sought (see Wilson, 1951). 
Equation (42) gives, in place of equation (20), 

k k 

[(1)gl]n = n-1 f (1 -z ' /k ) ; - l z 'dz  ' (44) 
0 

= nk/(k+n) .  (45) 

Similarly equation (26) becomes 

k 

f 
k (1-z ' /k)  ~ - l z ' d z '  

[(T)gl]~ = 0 {2rink In (1-z ' /k) - l}  ½ (46) 

The multiple obtained as the ratio for two zones, one 
normal and the other enhanced, is, therefore, 
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no = [gl]n/[gl]l • (48) 

For two acentrie zones 

no = n (k+l ) / ( k+n) ,  (49) 

which, as k -+ c~, tends to n, as it  should. For n = 2 
(a plane of symmetry) and k = 10, no drops only to 
1-83, and for k = 5 to 1.72. For two centric zones 

1-[k[(k+2n)]t  (50) 
no = 1 - [ k / ( k + 2 ] ~  

= n {  1 3 ( n - l )  } 
2 k 4-.. .  , (51) 

which also tends to n as k-+ oo. Here, for n = 2, 
k = 10, the observed multiple is 1-77, and for k = 5 
is 1.65. The comparison of a centric and an acentric 
follows similar lines. 

These results indicate, as might have been expected, 
that  the more disperse centrie zones will be the more 
affected. Nevertheless, so long as this is the sole 
source of error the issue is never likely to be in doubt 
in normal problems. 

4. E r r o r s  s y s t e m a t i c  a s  a f u n c t i o n  of 
s = (2 sin o)/~ 

4.1. Errors of this type may occur in the estimated 
intensities as a result of changes in the spot size and 
shape, in the c~-doublet separation and in the back- 
ground density. They may also arise in the estimation 
of absorption corrections. I t  was pointed out, however, 
by Howells et al. (1950) that  if ideally performed the 
statistical manipulations should yield results un- 
affected by errors of this kind. For, as was shown by 
these authors, the statistical tests are most con- 
veniently carried out on the data expressed in terms 
of z (= I/<1)), which will not contain errors systematic 
in s, i f  the course of the <P) curve has been accurately 
determined. The remainder of this section is devoted, 
therefore, to a study of the effects of using erroneous 
values of <I> for preparing the z data. 

Before doing so, however, it is necessary to empha- 
size that  these errors are not eliminated in the method 
proposed by Wilson (1942) and now widely used for 
putting the observed intensities on an approximately 
absolute scale. Their effects are considered in § 4.4, 
but it is worth noting here that  both the scaling factor 
and the exponent in the 'temperature factor' are 
affected. The error in the scaling factor from such 
causes will usually be small, but the error in the 
exponent of the temperature factor may be large and it 
is then no longer properly identifiable with the Debye- 
Waller constant. 

4.2. Effect on the distribution functions 
If we suppose that  the intensities have been ac- 

curately estimated, but that  the value determined for 
the local average, <I>det., is incorrect, we may write, 
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' <l>d~t. = < / > [ l + e ( s ) ] ,  (52)  

where e(8) is a function of s, which, one hopes, is never 
large compared with unity. Then, 

Zaet. = z/[1 +e(s)] (53) 

and the empirical cumulative distribution determined 
from all reflexions in a small range of 8 will be, aside 
from random errors and statistical fluctuations, 

No(zd~t.) = N{zdet.[1 +e(8)]}, (54) 

where N(z)  is the ideal cumulative distribution func- 
tion. The observed distribution function, No(Z) (see 
footnote *, p. 384), is the average of those obtained for 
the range of s considered.* This is usually the whole 
range for which reflexions are observed, but  sometimes 
the low-angle and high-angle reflexions are considered 
separately (see § 4.4). 

We ;nay then expand equation (54) and obtain 

No(Z) = <N(z )+e(s ) zP(z )+½ez(s ) z~P ' ( z )+  . . . > 

= N ( z ) + < ~ > ~ P ( ~ ) + ~ < : > : P ' ( z ) +  . . . .  (55) 
The probability distribution of z is the derivative of 
this, 

Pc(z) = ( l+<e>)P(z)+(<e>+<e~>)zP'(z)+. . . ,  (56) 

where P(z)  is the ideal distribution function. Thus the 
first-order effect on both N(z) and P(z)  can be either 
an enhancement or a depression, depending on the 
sign of <~>. 

4.3. Effec t  on the. variance and  ratio tests 

From equation (53) the observed mean value of 
Zdet. can be written as 

<Zdet~ > = <Z>o = <<Z~0(8)>> , (57) 

where one average is with respect to z, the other is 
with respect to s, and 

~2(8) = {I ÷e(s)} -I. (58) 

Since <z> is unity for all distributions (Rogers & 
Wilson, 1953), equation (57) reduces to 

<~>o = <~(~)> • (59) 

Similarly, the mean value of = Zdet. is 

<:>~ = <<:#(~)>> (60) 

= (v+ 1)<y?(8)>, (61) 

• Note that in forming the average of a function, f(~), 
d i f f e r e n t  w e i g h t s  a r e  a p p r o p r i a t e  f o r  r o w s ,  z o n e s  a n d  c o m p l e t e  
arrays: 

<f > = I 'Isa f(s)ds (row), 
82 ~ 81 ' St 

__ 2 Is, f(s)sd, s ( z o n e )  ~! 8 
82--81 t,$~ 

3 Is= -- 3 3 $(s)82ds (array). 
82 - -  81 • 8 t 

where v is the specific variance. The observed variance 
may  take one of three forms, depending on exactly 
how it is evaluated. 

If the mean value of Zdetl is assumed to be unity,  
as it would be in the absence of error, the determined 
value of the specific variance is 

(i) % = <Z~>o-I 

= v+(v+ I) {<yJ2(s)>-l}, (62) 

which is exactly analogous to equation (12). 
If the actual mean value of Zdet. for the whole range 

of s is used 

(ii) vo = v<~2(s)>+<~2(s)>-<~(s)>2; (63) 

the terms not multiplied by v are the variance of yJ(s). 
Finally, the square of the local mean value of Zdet., 

y#(S), could be subtracted from the local mean value 
o f  Z2 det., (V+I)~p2(S), before the averaging with respect 
to s is carried out. The observed specific variance then 
has the value 

( i i i )  Vo = ~ < ~ ( s ) > .  (64) 

These three results are conveniently compared if 
written in the form 

(i) Vo = v + ( v + ] ) < ~ ( ~ ) - l >  
= v<~2(s)>+<~(~)>_], (62a) 

(ii) Vo = v + ( v + l ) < v 2 2 ( s ) - l > - < y ~ ( 8 ) > ~ + l  

=v<yj2(s)>+<v/2(s)>--<v2(s)> ~, (63a) 

if, i) vo = v + v < v / 2 ( s ) - l >  

= v<~02(s)> • (64a) 

Of the three, the third seems preferable, although the 
second has been tha t  ordinarily used in the past  as i t  
involves less work. 

The observed values of the test ratio will be 

~o = <<z½~v½ (s)>~>s , (65) 

the suffixes indicating the averaging variables. This 
transforms to 

eo=e<w(s)> or e<Z>o. (66) 

The observed values of the specific variance or test  
ratio, like the distribution functions, may, therefore, 
be either reduced or increased, depending on the sign 
of <~>. 

4.4. The experimentally determined (I> curve usu- 
ally corresponds to an equation of the form 

<I>det. = AX exp { - ½ B s ~ } ,  (67) 

where X = Xf~ and may be calculated from tabulated 
values of the atomic scattering factors, and A and B 
are the scaling factor and the effective temperature 
coefficient respectively. A, B are determined ex- 
perimentally from a plot of log {<I)det.[~.} versus s ~ 
or sin ~ 0 by drawing the best straight line through 
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the points. Then, assuming the validity of equation 
(67), the intercept gives A and the gradient B. The 
values estimated in this way may  be in error because 
of: (i) the use of inappropriate scattering factors (see 
Rogers, 1954, 1955), (ii) incorrect allowances for ab- 
sorption in spherical or cylindrical crystals, (iii) an 
unlcnown amount of overlapping of atoms in projec- 
tion, which raises <1) for small values of s, (iv) ex- 
tinction, which reduces <I> for s small, and (v) the 
effects of unobserved reflexions (see § 5.1). 

These can all impart  curvature to the log {<I>det./Z'} 
plot, which, when combined with the inevitable scatter 
of the points, raises some doubt as to the best straight 
line and what weight to at tach to the various points. 
(Some examples are discussed by Rogers (1954, 1955) 
in which the curvature is sufficiently well defined to 
justify the abandonment of a straight line.) 

If, however, we write 

< I > d e t  ° ~-~ A(1 +c~)X(1 +a)  exp {-½(B+fl)s"}, (68) 

where A, B, Z are the correct values and c~, 8, a are 
their errors, it is evident tha t  only a can be a function 
of s. Then, from (52), 

1 +t(s) = (1 + ~ ) ( l + a )  exp {-½flsg}, 
~(s) - ~ + a - ½ ~ s  ~, (69) 

so tha t  <e>, which determines to a first approximation 
the departure for each test, becomes 

<~> = ~ + < o > - ½ 3 < s ~ > .  (70) 

(As explained previously, the values of <s~> depend 
on whether a row, zone or array is being considered.) 
Errors in the intercept affect the low- and high-angle 
values of <I) equally. Errors in the slope will affect 
the high-angle reflexions preferentially. In fact, with 
suitable signs for c~, fl, a the N(z) curve (or other 
statistical test) may  show opposite departures from 
the ideal at  high and low angles. These effects are, 
however, confined to the statistical tests and the 
reliability index, since errors in converting to the 
absolute scale of intensities can have little influence 
on the elucidation of a structure and can be removed 
at  a later stage by adjustments designed to make 
(Io)/(Ic) or (IFol)/(IFcl> uni ty  for all values of s. 

4.5. Possibilities of confusion in the tests for centro- 
symmetry 

For both the acentric and the centric distributions 
the quant i ty  zP(z), appearing as the coefficient of <~) 
in (55) and (56), has its maximum values (0.368 and 
0.242 respectively) at z = 1. Here the difference be- 
tween the cumulative distribution functions is only 
5 %, so tha t  errors of as little as 15 % in the <I> curve 
might lead to some hesitation as to the type of distri- 
bution. I-Iowever, the shapes of the distributions at  
lower values of z are very little affected, and a recon- 
sideration of the <I> curve might serve to remove the 
hesitation. Much larger errors, approaching 100%, 

would be needed to produce confusion of the distribu- 
tion at  z---0.3. To raise the value of the specific 
variance from 1 to 1.5 would need a mean error of 
about - 2 0 %  and to drop it from 2 to 1-5 would need 
about + 15 %. Errors of 10 % would suffice to make the 
test  ratio indecisive. 

I t  thus appears tha t  errors in the <I> curve are more 
likely to lead to hesitation or even mistakes in deciding 
on the type of distribution than  are random errors or 
systematic errors of the extinction type. For the 
successful application of the statistical tests it is 
essential, therefore, to determine the ( I )  function as 
accurately as possible. Recommendations for this are 
given by Rogers (1955). 

4,6. The average-intensity multiples 
The values of <I> found in two zones at  the same 

(sin" 0> will differ if there is anisotropy of the thermal 
motion in the crystal or if the factors (fi), (iii), (iv) 
or (v) of § 4.4 have different disturbing effects in the 
two zones. The graphs of log <I> versus (sin" 0> will 
not then coincide. Similarly, if one zone has an en- 
hanced average the two curves will not run parallel 
so tha t  the ratio <I>,,/<I> proves to be a function of 0. 
The increase due to atomic overlap and the decrease 
due to extinction are both confined to low 0, whereas 
threshold effects (see § 5.1) are then least. Provided, 
therefore, tha t  the residual absorption errors are small, 
the high-angle parts of the log <I> versus (sin" 0> 
graphs should taper  uniformly. I t  is from these por- 
tions tha t  extrapolations back to 0 = 0 should be 
made in order to eliminate the effects of the differing 
temperature factors and threshold effects. Although 
the precision of the intercepts may be small it should 
be adequate in view of the large effect sought. 

5. E r r o r s  due  to  u n o b s e r v e d  r e f l e x i o n s  

5.1. Most workers are in t h e  habit  of estimating the 
lowest observable intensity tha t  can be measured in 
different parts of their films. This varies only slightly 
with sin 0, but  after allowing for the Lorentz and 
polarization factors the threshold intensity, It, varies 
considerably with sin 0. Intensities of finite magnitude 
less than this are either not observed at  all or are too 
faint for any reliable estimate to be made. Clearly It is 
not directly dependent on the intensity distribution; 
indirectly it may  be influenced by the investigator 's 
decision to use larger exposures for centrosymmetric 
crystals. We are assuming, therefore, a relation be- 
tween Io and I of the form 

I o = I  for I>~I t ,  
= 0  for I < I t .  ] (71) 

This gives, on reference to the two distribution func- 
tions, 

(1)gl = (zt+ 1) exp (-z,) (72) 
and 
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(1)g z = 1 - e r f  (½zt)½+(2zt/~)t exp (-½zt),  (73) 
where 

z, = X, l Z  o r  It/(I). 

These functions are depicted in Fig. 3(a). 
For  many  organic compounds the at tenuat ion with 

sin ~ 0 is so rapid tha t  few reflexions are observable 
at  high 0. The value then obtained for (Io) will be 
very  much lower than  <I) and this will be a smooth 
factor of major importance contributing to the effec- 
t ive temperature coefficient. The broken lines in 

1435[ I ~  ...,Acentric 
< Io>1.001 __.------" ----- ~..,~ 
4 " ~  ~ ~ ~ - ~ " ~ ~ ' ~ ~ "  ~ -  Ce n t r ic 

(b) 

~.~- Cen t r i c  

~--- . . . . .  ~ r i¢ 

0 I ! 
0 1 2 

zt 
(o) 

14 

<1o_> 
( I >  0-5 

:Fig. 3. (a) The ratio (Io)l(I) which results if all unobserved 
reflexions (I < ztE,) are included in the averaging with zero 
intensity (full lines), or 0"35ztX (broken lines). 

(b) Improvement obtained by including unobserved re- 
flexions at 0.43zt2: (acentric) or 0"30zt2: (centric). Broken 
lines as in (a). Note the change in scale of the ordinates. 

Fig. 3(a), (b) illustrate the improvements which result 
from including all these unobserved reflexions at  
0-35zt when finding <Io>. If, however, the distribution 
of intensities is already known the best approximations 
are g iven  by 0"43zt (acentric)1 and 0"30zt (centric), 
(see Fig. 3(b)). The influence of unobserved reflexions 
on the reliability index has already been discussed by  
Fhillips, Rogers & Wilson (1950), and Hamilton (1955) 
has discussed their proper use in least-squares refine- 
ment. 

(74) 

5.2. The N(z) test 
From equation (71) we have 

Zo = L I ( I o )  = Z l ( Z o )  , 

=z/g  1 for I / > &  ~. 
and = 0 for I <~ I t .  / 

The graph of No(z) is obtained, therefore, by  re- 
scaling the z axis for all values of Zo ~ zt/gl, but  is 
constant below this point (see Fig. 4). The sharp 

0.0 
~/~o.31 z, 

N(z). 0"5 f ~ 0"SJ 

i 
0 1 

Z 

Fig. 4. N(z) curves as modified by including all anobserved 
reflexions with zero intensity for threshold intensities, zt, 
of 0.0, 0.3, 0-5. 

break in these curves will be rounded in practice as 
a result of combining data  for which zt is changing 
rapidly in reciprocal space. Again, the most satis- 
factory parts of these plots will be at  z ~--0.3 to 0-5 
and parts of the reciprocal lattice which contain 
more than  about 50% (centric) or 30% (acentrie) of 
unobserved reflexions should preferably be omitted. 

5-3. The variance test 
I t  is easy to show tha t  

(1)g~ = ½(z~+2zt+2 ) exp (-zt)  (75) 

(TWo / / ' ~  

~ 0 ) 0 o  
(T) eo 

0 I I I I t 
0 zt 0.5 

Fig. 5. The dependence of the specific variances and the test 
ratios upon the threshold intensity, zt. 
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and 
(1)g2 = (1)gl+½(2z3/~) ½ exp ( -zd2)  . (76) 

Hence, from (7), 

(1)% = exp (zt) ( l + ( z t + l ) - 2 } - I  (77) 
and 

(i)Vo = ~ + [(i)gl]" 

which are plotted in :Fig. 5. There is little possibility 
of confusion for zt up to 0.5. 

5-4. The ratio test 

The quantities, g½, m a y  be shown to be 

(1)g½ = 2(zdg)½ exp ( - z t ) + ( 1 - e f f  (z~)) (79) 
and 

(i)g~ = exp (--½z,), (80) 
so that ,  by  (5), 

(1)e o = (1 +z t ){ (g /4) (1-e r f  (z~)) 2 exp (z,) 

+(gzt)½(1--erf (zit ))+ztexp (--zt) } (81) 

and 
( i )e  o = 2 exp (--zt)/~(i)g 1 . (82) 

From :Fig. 5, in which these are plotted, it is imme- 
diately apparent  t ha t  the ratio test  is very sensitive 
to errors of this kind and confusion will occur for 
zt ~ 0"15. 

5.5. Average multiples 
The effects of unobserved reflexions on the average- 

intensity multiples have been considered already in 
§ 4.4. 

6. C o n c l u s i o n s  

We can now a t t empt  to review the detailed conclusions 
set out in the several sections of this paper. 

(1) Neither random errors, nor systematic errors of 
the 'extinction'  type,  having ordinary magnitudes, 
can lead to ambigui ty  or confusion of the distribution 
types. In  particular, where these errors coexist, the 
deviations they  each produce are opposed and thus 
tend to cancel. 

(2) Special care must  be taken in the evaluation of 
the ( I )  function, and those annuli for which 
It ~ ½(Io) should either be discarded or used with 
caution. :For further  details see the recommendations 
given by Rogers (1955). 

(3) The three tests for centrosymmetry are unequally 
affected by any given error. The variance is most 
disturbed by a redistribution of the strong terms, the 
ratio test  by redistribution of the weak terms. The 
N(z) test, however, keeps these distinct and is to tha t  
extent  more informative. In serious statistical work 

it seems desirable to use all three tests side by  side 
and if possible to separate the results for different 
ranges of sin 9" 0. 

(4) Although the value deduced for the average- 
intensity multiple may  not be very accurate, the 
identification of a plane of symmetry  should never be 
in doubt as the effect sought is so large. 

(5) The results derived here permit the estimation 
of a likely outer limit for departures from the ideal 
statistical criteria in any problem. Anomalies exceeding 
these limits can be regarded as significant and an 
explanation should be sought on the lines indicated 
in (i), (ii), (iii) of § 1-1. 
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